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Le Cam’s convex hull method

Consider two subsets P0 and P1 of P that are 2δ-separated, in the sense
that

ρ (θ (P0) , θ (P1)) ≥ 2δ for all P0 ∈ P0 and P1 ∈ P1.

Lemma (15.9)

For any 2δ-separated classes of distributions P0 and P1 contained within
P, any estimator θ̂ has worst-case risk at least

sup
P∈P

EP[ρ(θ̂, θ(P))] ≥
δ

2
sup

P0∈conv(P0)
P1∈conv(P1)

{1− ∥P0 − P1∥TV} . (1)
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Proof of Lemma 15.9

Proof. For any estimator θ̂, let us define the random variables

Vj(θ̂) =
1

2δ
inf

Pj∈Pj

ρ(θ̂, θ (Pj)), for j = 0, 1.

We then have

sup
P∈P

EP[ρ(θ̂, θ(P))] ≥
1

2

{
EP0

[
ρ
(
θ̂, θ (P0)

)]
+ EP1

[
ρ
(
θ̂, θ (P1)

)]}
≥ δ

{
EP0

[
V0(θ̂)

]
+ EP1

[
V1(θ̂)

]}
.

Since the right-hand side is linear in P0 and P1, we can take suprema over
the convex hulls, and thus obtain the lower bound

sup
P∈P

EP[ρ(θ̂, θ(P))] ≥ δ sup
P0∈conv(P0)
P1∈conv(P1)

{
EP0

[
V0(θ̂)

]
+ EP1

[
V1(θ̂)

]}
.
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Proof of Lemma 15.9, cont.

By the triangle inequality, we have

ρ
(
θ̂, θ (P0)

)
+ ρ

(
θ̂, θ (P1)

)
≥ ρ (θ (P0) , θ (P1)) ≥ 2δ.

Taking infima over Pj ∈ Pj for each j = 0, 1, we obtain

inf
P0∈P0

ρ
(
θ̂, θ (P0)

)
+ inf

P1∈P1

ρ
(
θ̂, θ (P1)

)
≥ 2δ,

which is equivalent to V0(θ̂) +V1(θ̂) ≥ 1. Since Vj(θ̂) ≥ 0 for j = 0, 1, the
variational representation of the TV distance (see Exercise 15.1) implies
that, for any Pj ∈ conv (Pj), we have

EP0

[
V0(θ̂)

]
+ EP1

[
V1(θ̂)

]
≥ 1− ∥P1 − P0∥TV ,

which completes the proof.
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Example 15.10: Sharpened bounds for Gaussian location
family

Setting θ = 2δ as before, consider the two families P0 = {Pn
0} and

P1 =
{
Pn
θ ,Pn

−θ

}
.

The mixture distribution P := 1
2P

n
θ +

1
2P

n
−θ belongs to conv (P1).

From the second-moment bound explored in Exercise 15.10(c), we
have

∥P− Pn
0∥

2
TV ≤ 1

4

{
e

1
2

(√
nθ
σ

)4

− 1

}
=

1

4

{
e

1
2

(
2
√
nδ

σ

)4

− 1

}
.

Setting δ = σt
2
√
n
for some parameter t > 0 to be chosen, the convex

hull Le Cam bound (1) yields

min
θ̂

sup
θ∈R

Eθ[|θ̂ − θ|] ≥ σ

4
√
n
sup
t>0

{
t

(
1− 1

2

√
e

1
2
t4 − 1

)}
≥ 3

20

σ√
n
.
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Fano’s method: recall basic set-up

We are interested in lower bounding the probability of error in an
M-ary hypothesis testing problem, based on a family of distributions
{Pθ1 , . . . ,PθM} .
A sample Z is generated by choosing an index J uniformly at random
from the index set [M] := {1, . . . ,M}, and then generating data
according to PθJ .

In this way, the observation follows the mixture distribution
QZ = Q := 1

M

∑M
j=1 Pθj .

Goal: to identify the index J of the probability distribution from
which a given sample has been drawn.
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Kullback–Leibler divergence and mutual information

Difficulty: the amount of dependence between the observation Z and
the unknown random index J.

Question: How to measure the amount of dependence between a pair
of random variables?

A natural way is by computing some type of divergence measure
between the joint distribution and the product of marginals.

The mutual information between the random variables (Z , J) is
defined in exactly this way:

I (Z , J) := D (QZ ,J∥QZQJ) ,

which uses the Kullback-Leibler divergence as the underlying measure
of distance
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Kullback–Leibler divergence and mutual information

Given our set-up and the definition of the KL divergence, the mutual
information can be written as

I (Z ; J) =
1

M

M∑
j=1

D
(
Pθj∥Q

)
, (2)

corresponding to the mean KL divergence between component
distribution Pθj and the mixture distribution Q̄ = QJ , averaged over
the choice of index j .

Consequently, the mutual information is small if the distributions Pθj

are hard to distinguish from the mixture distribution Q on average.
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Fano lower bound on minimax risk

The Fano method is based on the following lower bound:

P[ψ(Z ) ̸= J] ≥ 1− I (Z ; J) + log 2

logM
.

When combined with the reduction from estimation to testing given in
Proposition 15.1, we obtain the following lower bound on the minimax
error:

Proposition (15.12)

Let
{
θ1, . . . , θM

}
be a 2δ-separated set in the ρ semi-metric on Θ(P), and

suppose that J is uniformly distributed over the index set {1, . . . ,M}, and
(Z | J = j) ∼ Pθj . Then for any increasing function Φ : [0,∞) → [0,∞),
the minimax risk is lower bounded as

M(θ(P); Φ ◦ ρ) ≥ Φ(δ)

{
1− I (Z ; J) + log 2

logM

}
, (3)

where I (Z ; J) is the mutual information between Z and J.
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Fano lower bound on minimax risk

As we shrink δ, then the 2δ-separation criterion becomes milder, so
that the cardinality M ≡ M(2δ) in the denominator increases.

At the same time, in a generic setting, the mutual information I (Z ; J)
will decrease, since the random index J ∈ [M(2δ)] can take on a
larger number of potential values.

By decreasing δ sufficiently, we may thereby ensure that

I (Z ; J) + log 2

logM
≤ 1

2
(4)

so that the lower bound (3) implies that M(θ(P); Φ ◦ ρ) ≥ 1
2Φ(δ).
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Fano lower bound on minimax risk

In order to derive lower bounds in this way, there remain two technical and
possibly challenging steps:

1 To specify 2δ-separated sets with large cardinality M(2δ).

2 To compute or upper bound the mutual information I (Z ; J).
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Bounds based on local packings

Using this convexity and the mixture representation (2), we find that

I (Z ; J) ≤ 1

M2

M∑
j ,k=1

D (Pθj∥Pθk ) . (5)

Suppose that we can construct a 2δ-separated set contained within Ω
such that, for some quantity c , the Kullback-Leibler divergences
satisfy the uniform upper bound√

D (Pθj∥Pθk ) ≤ c
√
nδ for all j ̸= k. (6)

The bound (5) then implies that I (Z ; J) ≤ c2nδ2, and hence the
bound (4) will hold as long as

logM(2δ) ≥ 2
{
c2nδ2 + log 2

}
. (7)
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Example 15.14: Minimax risks for linear regression

The standard linear regression model y = Xθ∗ + w , where X ∈ Rn×d

is a fixed design matrix, and the vector w ∼ N
(
0, σ2In

)
is

observation noise.

Goal: to obtain lower bounds on the minimax risk in the prediction

(semi-)norm ρX(θ̂, θ
∗) :=

∥X(θ̂−θ∗)∥
2√

n
.

For a tolerance δ > 0 to be chosen, consider the set{
γ ∈ range(X) | ∥γ∥2 ≤ 4δ

√
n
}
,

and let
{
γ1, . . . , γM

}
be a 2δ

√
n-packing in the ℓ2-norm.

Since this set sits in a space of dimension r = rank(X), Lemma 5.7
implies that we can find such a packing with logM ≥ r log 2 elements.
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Example 15.14: Minimax risks for linear regression, cont.

We thus have a collection of vectors of the form γj = Xθj for some
θj ∈ Rd , and such that

∥Xθj∥2√
n

≤ 4δ, for each j ∈ [M],

2δ ≤ ∥X(θj − θk)∥2√
n

≤ 8δ for each j ̸= k ∈ [M]× [M].

Under Pθj , the observed vector y ∈ Rn ∼ N
(
Xθj , σ2In

)
. By Exercise

15.13,

D (Pθj∥Pθk ) =
1

2σ2
∥X(θj − θk)∥22 ≤

32nδ2

σ2
.

Consequently, for r sufficiently large, the lower bound (7) can be

satisfied by setting δ2 = σ2

64
r
n , and we conclude that

inf
θ̂

sup
θ∈Rd

E
[
1

n
∥X(θ̂ − θ)∥22

]
≥ σ2

128

rank(X)

n
.
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Example 15.16: Minimax risks for sparse linear regression

The high-dimensional linear regression model y = Xθ∗ +w , where the
regression vector θ∗ is known a priori to be sparse, say with at most
s < d non-zero coefficients.

It is then natural to consider the minimax risk over the set

Sd(s) := Bd
0 (s) ∩ B2(1) =

{
θ ∈ Rd | ∥θ∥0 ≤ s, ∥θ∥2 ≤ 1

}
of s-sparse vectors within the Euclidean unit ball.

From our earlier results in Chapter 5, there exists a 1/2-packing of
this set with log cardinality at least logM ≥ s

2 log
d−s
s .

We follow the same rescaling procedure as in Example 15.14 to form
a δ-packing such that

∥∥θj − θk
∥∥
2
≤ 4δ for all pairs of vectors in our

packing set.
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Example 15.16: Minimax risks for sparse linear regression,
cont.

Since the vector θj − θk is at most 2s-sparse, we have√
D (Pθj∥Pθk ) =

1√
2σ

∥X(θj − θk)∥2 ≤
γ2s√
2σ

4δ
√
n

where γ2s := max|T |=2s σmax (XT ) /
√
n.

Putting together the pieces, we see that the minimax risk is lower
bounded by any δ > 0 for which

s

2
log

d − s

s
≥ 128

γ22s
σ2

nδ2 + 2 log 2.

As long as s ≤ d/2 and s ≥ 10, the choice δ2 = σ2

400γ2
2s
s log d−s

s

suffices. We conclude that in the range 10 ≤ s ≤ d/2, the minimax
risk is lower bounded as

M
(
Sd(s); ∥ · ∥2

)
≿
σ2

γ22s

s log ed
s

n
.
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Local packings with Gaussian entropy bounds

Lemma (15.17)

Suppose J is uniformly distributed over [M] = {1, . . . ,M} and that Z
conditioned on J = j has a Gaussian distribution with covariance Σj . Then
the mutual information is upper bounded as

I (Z ; J) ≤ 1

2

log det cov(Z )− 1

M

M∑
j=1

log det
(
Σj

) . (8)

In the special case when Σj = Σ for all j ∈ [M], it takes on the simpler
form

I (Z ; J) ≤ 1

2
log

(
det cov(Z )

det(Σ)

)
. (9)
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Example 15.18: Variable selection in sparse linear
regression

Return to the model of sparse linear regression from Example 15.16.

Goal: to lower bound the minimax risk for the problem of determining
the support set S = {j ∈ {1, 2, . . . , d} | θ∗j ̸= 0}.
The problem of interest is itself a multiway hypothesis test-namely,
that of choosing from all

(d
s

)
possible subsets.

We show that, in order to achieve a probability of error below 1/2,
any method requires a sample size of at least

n > max

8
log(d + s − 1)

log(1 +
θ2min
σ2 )

, 8
log

(d
s

)
log(1 + s

θ2min
σ2 )

 , (10)

as long as min
{
log(d + s − 1), log

(d
s

)}
≥ 4 log 2. θmin = minj∈S |θ∗j |.
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Example 15.18: Variable selection in sparse linear
regression, cont.

We derive lower bounds by first conditioning on a particular
instantiation X = {xi}ni=1 of the design matrix, and using a form of
Fano’s inequality that involves the mutual information IX(y ; J).

In particular, we have

P [ψ(y ,X) ̸= J | X = {xi}ni=1] ≥ 1− IX(y ; J) + log 2

logM

so that by taking averages over X, we can obtain lower bounds on
P[ψ(y ,X) ̸= J] that involve the quantity EX [IX(y ; J)].
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Example 15.18: Ensemble A

Consider the class M =
(d
s

)
of all possible subsets of cardinality s.

For the ℓ th subset Sℓ, let θℓ ∈ Rd have values θmin for all indices
j ∈ Sℓ, and zeros in all other positions.

For a fixed covariate vector xi ∈ Rd , an observed response yi ∈ R
then follows the mixture distribution 1

M

∑M
ℓ=1 Pθℓ , where Pθ′ is the

distribution of a N
(〈
xi , θ

ℓ
〉
, σ2

)
random variable.
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Example 15.18: Ensemble A, cont.

By the definition of mutual information, we have

IX(y ; J) = HX(y)− HX(y | J)
(i)

≤

[
n∑

i=1

HX (yi )

]
− HX(y | J)

(ii)
=

n∑
i=1

{HX (y1)− HX (y1 | J)}

=
n∑

i=1

IX (yi ; J)

where step (i) follows since independent random vectors have larger
entropy than dependent ones (see Exercise 15.4), and step (ii) follows
since (y1, . . . , yn) are independent conditioned on J.
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Example 15.18: Ensemble A, cont.

Next, applying Lemma 15.17 repeatedly for each i ∈ [n] with Z = yi ,
conditionally on the matrix X of covariates, yields

IX(y ; J) ≤
1

2

n∑
i=1

log
var (yi | xi )

σ2
.

Now taking averages over X and using the fact that the pairs (yi , xi )
are jointly i.i.d., we find that

EX [IX(y ; J)] ≤
n

2
E
[
log

var (y1 | x1)
σ2

]
≤ n

2
log

Ex1 [var (y1 | x1)]
σ2

,

where the last inequality follows Jensen’s inequality, and concavity of
the logarithm.

Yangjianchen Xu (Department of Biostatistics University of North Carolina at Chapel Hill)HDS36 - Le Cam’s convex hull and Fano’s method 02/04/2022 23 / 34



Example 15.18: Ensemble A, cont.

Since the random vector y1 follows a mixture distribution with M
components, we have

Ex1 [var (y1 | x1)] ≤ Ex1

[
E
[
y21 | x1

]]
= Ex1 [x

T
1 {

1

M

M∑
j=1

θj ⊗ θj}x1 + σ2]

= trace(
1

M

M∑
j=1

(θj ⊗ θj)) + σ2.

Now each index j ∈ {1, 2, . . . , d} appears in
(d−1
s−1

)
of the total

number of subsets M =
(d
s

)
, so that

trace(
1

M

M∑
j=1

θj ⊗ θj) = d

(d−1
s−1

)(d
s

) θ2min = sθ2min.
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Example 15.18: Ensemble A, cont.

Putting together the pieces, we conclude that

EX [IX(y ; J)] ≤
n

2
log

(
1 +

sθ2min

σ2

)
,

The Fano lower bound implies that

P[ψ(y ,X) ̸= J] ≥ 1−
n
2 log

(
1 +

sθ2min
σ2

)
+ log 2

log
(d
s

) ,

from which the first lower bound in equation (10) follows as long as
log

(d
s

)
≥ 4 log 2, as assumed.
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Example 15.18: Ensemble B

Let θ̄ ∈ Rd be a vector with θmin in its first s − 1 coordinates, and
zero in all remaining d − s + 1 coordinates.

Define θj := θ̄ + θminej for j = s, . . . , d .

By a straightforward calculation, we have E[Y | x ] = ⟨x , γ⟩, where
γ := θ̄ + 1

M θmines→d , and the vector es→d ∈ Rd has ones in positions
s through d , and zeros elsewhere.

By the same argument as for ensemble A, it suffices to upper bound
the quantity Ex1 [var (y1 | x1)]. Using the definition of our ensemble,
we have

Ex1 [var (y1 | x1)] = σ2+trace

 1

M

M∑
j=1

(
θj ⊗ θj − γ ⊗ γ

) ≤ σ2+θ2min.
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Yang–Barron version of Fano’s method

Lemma (15.21 (Yang-Barron method))

Let NKL(ϵ;P) denote the ϵ-covering number of P in the square-root KL
divergence. Then the mutual information is upper bounded as

I (Z ; J) ≤ inf
ϵ>0

{
ϵ2 + logNKL(ϵ;P)

}
. (11)

Proof. We observe that for any distribution Q, the mutual information is
upper bounded by

I (Z ; J) =
1

M

M∑
j=1

D
(
Pθj∥Q

) (i)

≤ 1

M

M∑
j=1

D (Pθj∥Q) ≤ max
j=1,...,M

D (Pθj∥Q) ,

(12)
where inequality (i) uses the fact that the mixture distribution
Q̄ := 1

M

∑M
j=1 Pθj minimizes the average Kullback-Leibler divergence over

the family {Pθ1 , . . . ,Pθm} (Exercise 15.11).
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Proof of Lemma 15.21

Since the upper bound (12) holds for any distribution Q, we are free to
choose it: in particular, we let

{
γ1, . . . , γN

}
be an ϵ-covering of Ω in the

square-root KL pseudo-distance, and then set Q = 1
N

∑N
k=1 Pγk . By

construction, for each θj with j ∈ [M], we can find some γk such that
D
(
Pθj∥Pγk

)
≤ ϵ2. Therefore, we have

D (Pθj∥Q) = Eθj

[
log

dPθj

1
N

∑N
ℓ=1 dPγk

]

≤ Eθj

[
log

dPθj
1
N dPγk

]
= D

(
Pθj∥Pγk

)
+ logN

≤ ϵ2 + logN.

Since this bound holds for any choice of j ∈ [M] and any choice of ϵ > 0,
the claim (11) follows.
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Yang–Barron version of Fano’s method

Lemma 15.21 allows us to prove a minimax lower bound of the order δ as
long as the pair (δ, ϵ) ∈ R2

+ are chosen such that

logM(δ; ρ,Ω) ≥ 2
{
ϵ2 + logNKL(ϵ;P) + log 2

}
.

Finding such a pair can be accomplished via a two-step procedure:

(A) First, choose ϵn > 0 such that

ϵ2n ≥ logNKL (ϵn;P) . (13)

(B) Second, choose the largest δn > 0 that satisfies the lower bound

logM (δn; ρ,Ω) ≥ 4ϵ2n + 2 log 2. (14)
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Example 15.23: Minimax risks for generalized Sobolev
families

Recall that the standard regression model is based on i.i.d.
observations of the form

yi = f ∗ (xi ) + σwi , for i = 1, 2, . . . , n,

where wi ∼ N (0, 1).

Assuming that the design points {xi}ni=1 are drawn in an i.i.d. fashion
from some distribution P, let us derive lower bounds in the
L2(P)-norm:

∥f̂ − f ∗∥22 =
∫
X
[f̂ (x)− f ∗(x)]2P(dx).
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Example 15.23: Minimax risks for generalized Sobolev
families, cont.

For a smoothness parameter α > 1/2, consider the ellipsoid ℓ2(N)
given by Eα = {(θj)∞j=1 |

∑∞
j=1 j

2αθ2j ≤ 1}.
Given an orthonormal sequence (ϕj)

∞
j=1 in L2(P), we can then define

the function class Fα := {f =
∑∞

j=1 θjϕj | (θj)
∞
j=1 ∈ Eα}.

For any such function class, we claim that the minimax risk in
squared L2(P)-norm is lower bounded as

inf
f̂

sup
f ∈Fa

E
[
∥f̂ − f ∥22

]
≿ min

{
1,

(
σ2

n

) 2a
2a+1

}
.
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Example 15.23: Minimax risks for generalized Sobolev
families, cont.

Consider a function of the form f =
∑∞

j=1 θjϕj for some θ ∈ ℓ2(N),
and observe that by the orthonormality of (ϕj)

∞
j=1, Parseval’s theorem

implies that ∥f ∥22 =
∑∞

j=1 θ
2
j .

Consequently, the metric entropy of Fα scales as
logN (δ;Fα, ∥ · ∥2) ≍ (1/δ)1/α (Example 5.12).

Accordingly, we can find a δ-packing
{
f 1, . . . , f M

}
of Fα in the

∥ · ∥2-norm with logM ≿ (1/δ)1/α elements.
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Example 15.23: Step A

For each j , let Pf j denote the distribution of y given {xi}ni=1 when the
true regression function is f j , and let Q denote the n-fold product
distribution over the covariates {xi}ni=1.

For any distinct pair of indices j ̸= k , we have

D (Pf j ×Q∥Pf k ×Q) = Ex [D (Pf j∥Pf k )]

= Ex [
1

2σ2

n∑
i=1

(f j (xi )− f k (xi ))
2]

=
n

2σ2
∥f j − f k∥22

Consequently, we find that

logNKL(ϵ) = logN(
σ
√
2√
n
ϵ;Fα, ∥ · ∥2) ≾ (

√
n

σϵ
)1/α.

Inequality (13) in step A can be satisfied by setting ϵ2n ≍
(

n
σ2

) 1
2α+1 .
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Example 15.23: Step B

It remains to choose δ > 0 to satisfy the inequality (14) in step B.
Given our choice of ϵn and the scaling of the packing entropy, we
require

(1/δ)1/α ≥ c

{( n

σ2

) 1
2α+1

+ 2 log 2

}
As long as n/σ2 is larger than some universal constant, the choice

δ2n ≍ (σ
2

n )
2α

2α+1 satisfies this condition.
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