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Overview

@ Le Cam’s convex hull method
@ Fano's method

e Bounds based on local packings
e Local packings with Gaussian entropy bounds
e Yang—Barron version of Fano's method
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Le Cam’s convex hull method

Consider two subsets Py and P; of P that are 2§-separated, in the sense
that

p (0 (Po),0(P1)) >26 forall Py € Py and P; € P;.

Lemma (15.9)

For any 2)-separated classes of distributions Py and ‘P1 contained within
‘P, any estimator 6 has worst-case risk at least

~ o
sup Ep[p(6,0(F))] = 5 sup {1~ |Fo—Piflpy}- (1)
PeP Po€Econv(Pg)
]Pleconv('Pl)
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Proof of Lemma 15.9

Proof. For any estimator 6, let us define the random variables

1 . _
Vi(0) = %Plgg p(0,6(P;)), forj=0,1

We then have

sup Bol (7, 0(E))] = 5 {Be, [0 (3.6 (20)) | + B, [0 (3.0 1))}

Since the right-hand side is linear in Py and P;, we can take suprema over
the convex hulls, and thus obtain the lower bound

sup Es[p(8,0(P))] > 6 sup  {Eg, [Vo(8)] + Bz, V()] }.
PeP ]P’OECan(Po)
]Pleconv(Pl)
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Proof of Lemma 15.9, cont.

By the triangle inequality, we have

p(0.0(P0)) +p (0.6 (P1)) = p(8(Po),0(P1)) = 2.

Taking infima over IP; € P; for each j = 0,1, we obtain

inf p(6,0(P0)) +

PoePo (57 0 (Pl)) > 26,

inf
P1eP1 P

~ -~ o~

which is equivalent to Vo(6) 4+ V1(0) > 1. Since V;(6) > 0 for j = 0,1, the
variational representation of the TV distance (see Exercise 15.1) implies
that, for any P; € conv (P;), we have

Ep, [Vo(g)} + Ep, [Vl(g)} >1— [Py = Pollpy,

which completes the proof.
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Example 15.10: Sharpened bounds for Gaussian location

family

@ Setting § = 26 as before, consider the two families Py = {Pg} and
P1={P,P",}.
o The mixture distribution PP := 3IP§ + P" ) belongs to conv (P1).

@ From the second-moment bound explored in Exercise 15.10(c), we

have
IP — Pg||3y < % {ex@y - 1} _1 {&(2@)4 _ 1}.

@ Setting 6 = % for some parameter t > 0 to be chosen, the convex

hull Le Cam bound (1) yields

1.4
E > 1_ = 3ttt 1 > .
me,nsup oll0 — 0] 4fsup{ ( 5 Ve )}—2oﬁ
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Fano's method: recall basic set-up

@ We are interested in lower bounding the probability of error in an
M-ary hypothesis testing problem, based on a family of distributions
{Pg,...,Pgm}.

@ A sample Z is generated by choosing an index J uniformly at random
from the index set [M] := {1,..., M}, and then generating data
according to Py..

@ In this way, the observation follows the mixture distribution
Qz :@ = %Zjl\ilpef'

@ Goal: to identify the index J of the probability distribution from
which a given sample has been drawn.
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Kullback—Leibler divergence and mutual information

o Difficulty: the amount of dependence between the observation Z and
the unknown random index J.

@ Question: How to measure the amount of dependence between a pair
of random variables?

@ A natural way is by computing some type of divergence measure
between the joint distribution and the product of marginals.

@ The mutual information between the random variables (Z, J) is
defined in exactly this way:

I(Z,J) = D(Qz,[|QzQy),

which uses the Kullback-Leibler divergence as the underlying measure
of distance
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Kullback—Leibler divergence and mutual information

@ Given our set-up and the definition of the KL divergence, the mutual
information can be written as

M

(Z;J) = %ZD (PullQ), (2)

=1

corresponding to the mean KL divergence between component
distribution [Py, and the mixture distribution Q = Q, averaged over
the choice of index j.

@ Consequently, the mutual information is small if the distributions Py;
are hard to distinguish from the mixture distribution Q on average.
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Fano lower bound on minimax risk

The Fano method is based on the following lower bound:

I(Z;J)+ log 2
Ply(2) # J] > 1_Iog—l\/l'

When combined with the reduction from estimation to testing given in

Proposition 15.1, we obtain the following lower bound on the minimax
error;

Proposition (15.12)

Let {0%,...,0M} be a 26-separated set in the p semi-metric on ©(P), and
suppose that J is uniformly distributed over the index set {1,..., M}, and
(Z| J=Jj) ~Pyj. Then for any increasing function ® : [0, 00) — [0, 00),
the minimax risk is lower bounded as

MO(P): & 0 p) > () {1 . %} 3)

where 1(Z; J) is the mutual information between Z and J.
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Fano lower bound on minimax risk

@ As we shrink d, then the 2§-separation criterion becomes milder, so
that the cardinality M = M(26) in the denominator increases.

@ At the same time, in a generic setting, the mutual information /(Z; J)
will decrease, since the random index J € [M(2)] can take on a
larger number of potential values.

@ By decreasing ¢ sufficiently, we may thereby ensure that

1(Z; log2 1
(Z;J) + log <1 ()
log M 2

so that the lower bound (3) implies that M(O(P); ® o p) > T(5).
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Fano lower bound on minimax risk

In order to derive lower bounds in this way, there remain two technical and
possibly challenging steps:

@ To specify 2j-separated sets with large cardinality M(20).

@ To compute or upper bound the mutual information /(Z; J).
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Bounds based on local packings

@ Using this convexity and the mixture representation (2), we find that

M

NZ: )< 15 Z (P || Pgr) - (5)
j,k=1

@ Suppose that we can construct a 2§-separated set contained within Q
such that, for some quantity ¢, the Kullback-Leibler divergences
satisfy the uniform upper bound

VD (Pyi||Pgr) < cv/nd  for all j # k. (6)

@ The bound (5) then implies that /(Z; J) < c?nd?, and hence the
bound (4) will hold as long as

log M(26) > 2 {c?né? + log 2} . (7)
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Example 15.14: Minimax risks for linear regression

The standard linear regression model y = X0* + w, where X € R"*¢
is a fixed design matrix, and the vector w ~ N (O,Uzln) is
observation noise.

Goal: to obtain lower bounds on the minimax risk in the prediction

_ |x(@-6%)|,

(semi-)norm px (6, 6*) -

NG

For a tolerance § > 0 to be chosen, consider the set

{7 € range(X) | 2 < 46v/n},

and let {71, e ,fyM} be a 2§y/n-packing in the f5-norm.

Since this set sits in a space of dimension r = rank(X), Lemma 5.7
implies that we can find such a packing with log M > rlog?2 elements.
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Example 15.14: Minimax risks for linear regression, cont.

@ We thus have a collection of vectors of the form 7/ = X#/ for some
¢ € R?, and such that

IXe/ ]2
vn
IX(¢ — 6%)l2
Vvn
@ Under Py, the observed vector y € R" ~ N/ (XQJ'7 azln). By Exercise
15.13,

< 49, for each j € [M],

25 < < 89 for each j # k € [M] x [M].

1 . 32n62
D (Pyi[|Pgi) = @HX(W — 9|5 < P

o Consequently, for r sufficiently large, the lower bound (7) can be

satisfied by setting 6% = @L' and we conclude that

o2 rank(X)
=128 n

inf sup E [HX(O 9)“2]
0 gcrd
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Example 15.16: Minimax risks for sparse linear regression

@ The high-dimensional linear regression model y = X6* + w, where the
regression vector 6* is known a priori to be sparse, say with at most
s < d non-zero coefficients.

@ It is then natural to consider the minimax risk over the set
59(s) := BY(s) NBa(1) = {0 € RY | Iollo < s, 161> < 1}

of s-sparse vectors within the Euclidean unit ball.
@ From our earlier results in Chapter 5, there exists a 1/2-packing of
this set with log cardinality at least log M > 5 log %.

@ We follow the same rescaling procedure as in Example 15.14 to form
a 0-packing such that HHJ — 0"”2 < 4 for all pairs of vectors in our
packing set.

Yangjianchen Xu (Department of BiostatisticHDS36 - Le Cam'’s convex hull and Fano's me 02/04/2022



Example 15.16: Minimax risks for sparse linear regression,

cont.

@ Since the vector #/ — 0¥ is at most 2s-sparse, we have

D (P, Py = X0 — 05V, < 125 a5
(Pos || Py ) [1X( )Ilz_ﬁa vn

1
V20
where 75 = MaX| 7|=2s Omax (XT) /\/E
@ Putting together the pieces, we see that the minimax risk is lower
bounded by any § > 0 for which

d— 2
° - log 75 > 1287—22.%52 +2log 2.

@ As long as s < d/2 and s > 10, the choice §% =

suffices. We conclude that in the range 10 < s < d/2 the minimax
risk is lower bounded as

 ($9(sk - 12 1 G SE S

25 n
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Local packings with Gaussian entropy bounds

Lemma (15.17)

Suppose J is uniformly distributed over [M] = {1,..., M} and that Z
conditioned on J = j has a Gaussian distribution with covariance ¥/. Then
the mutual information is upper bounded as

M
1 1 )
1(Z;J) < 5 log det cov(Z) — o JEZI logdet (/) » . (8)

In the special case when X/ = X for all j € [M], it takes on the simpler

form
(Z:J) < Flog (de;:to("z()z)> . 9)
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Example 15.18: Variable selection in sparse linear

regression

@ Return to the model of sparse linear regression from Example 15.16.

@ Goal: to lower bound the minimax risk for the problem of determining
the support set 5 = {j € {1,2,...,d} | 6} # 0}.

@ The problem of interest is itself a multiway hypothesis test-namely,
that of choosing from all (¢) possible subsets.

@ We show that, in order to achieve a probability of error below 1/2,
any method requires a sample size of at least

log(d +s—1) o log ()

02_ ? 92_ ? (]‘0)
log(1+ =)  log(1 + s-m=r)

n>max< 8

as long as min {Iog(d +s—1),log (g)} > 410g2. Omin = minjes \Gj*|
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Example 15.18: Variable selection in sparse linear

regression, cont.

@ We derive lower bounds by first conditioning on a particular
instantiation X = {x;}/_; of the design matrix, and using a form of
Fano's inequality that involves the mutual information Ix(y; J).

@ In particular, we have

Ix(y; J) + log 2
Py, X) # J | X = {x}]4] > 1~ W

so that by taking averages over X, we can obtain lower bounds on
P[(y, X) # J] that involve the quantity Ex [/Ix(y; J)].
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Example 15.18: Ensemble A

o Consider the class M = (%) of all possible subsets of cardinality s.
@ For the ¢ th subset S¢,let9¢ € R? have values Opmin for all indices
j € S and zeros in all other positions.

o For a fixed covariate vector x; € RY, an observed response y; € R
then follows the mixture distribution - S Py, where Py is the
distribution of a N (<x,-,9z> 702) random variable.
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Example 15.18: Ensemble A, cont.

@ By the definition of mutual information, we have

Ix(y; J) = Hx(y) — Hx(y | J)
> Hx (1)
i=1

SRR AN

<
i=1

=D Ix(yid)
i=1

where step (i) follows since independent random vectors have larger
entropy than dependent ones (see Exercise 15.4), and step (ii) follows
since (yi,...,yn) are independent conditioned on J.

—
=

— Hx(y | J)
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Example 15.18: Ensemble A, cont.

o Next, applying Lemma 15.17 repeatedly for each i € [n] with Z = y;,
conditionally on the matrix X of covariates, yields

var var (yi | xi)

o Now taking averages over X and using the fact that the pairs (y;, x;)
are jointly i.i.d., we find that

Ey [var (y1 | x1)]
o2 ’

rl 1)) g

o2

Ex [Ix(y; J)] < g]E [Iog

N \

where the last inequality follows Jensen's inequality, and concavity of
the logarithm.
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Example 15.18: Ensemble A, cont.

@ Since the random vector y; follows a mixture distribution with M
components, we have

Ey [var (y1 | Xl)] <Ey [E[yf | x]]

=B [xi {— Zef®m}x1+cr?]
1 M
= trace(— Z GJ ® 0’
_]=1

@ Now each index j € {1,2,...,d} appears in (gj) of the total
number of subsets M = (‘z) so that

D,
@

92

min*

trace(— Z ¢ ® 9’
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Example 15.18: Ensemble A, cont.

@ Putting together the pieces, we conclude that
n 0r2n|n
Ex [/X(y; J)] < 5 log ( 1+ R
@ The Fano lower bound implies that

5 log (1 + m'”) + log 2
log (5) ’

from which the first lower bound in equation (10) follows as long as
Iog( ) > 4log?2, as assumed.

Ply(y, X) # ] =1 -
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Example 15.18: Ensemble B

o Let O € RY be a vector with O, in its first s — 1 coordinates, and
zero in all remaining d — s + 1 coordinates.

o Define ¢/ := §+0minej forj=s,...,d.

@ By a straightforward calculation, we have E[Y | x] = (x, ), where
v:=0+ ﬁ@minesﬁd, and the vector es_,4 € R? has ones in positions
s through d, and zeros elsewhere.

@ By the same argument as for ensemble A, it suffices to upper bound
the quantity E,, [var (y1 | x1)]. Using the definition of our ensemble,
we have

M
1 . .
Exl [Var (y]. ’ X]_)] = 02+trace M E (6/ [%9) 91 — 7®fy) S 0_2_'_02‘“'1'
1
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Yang—Barron version of Fano's method

Lemma (15.21 (Yang-Barron method))

Let Nx1.(¢; P) denote the e-covering number of P in the square-root KL
divergence. Then the mutual information is upper bounded as

(Z;J) < QQE{EQ + log Nk1(€; P)} - (11)

Proof. We observe that for any distribution Q, the mutual information is
upper bounded by

M 1<
I(Z;J)) = ZD Pw”@ < MZD(PGJHQ <.T3X D (Pyi[|Q) ,
(12)
where mequahty (i) uses the fact that the mixture distribution

Q:= i Z i1 }P’gj minimizes the average Kullback-Leibler divergence over
the family {Pgl ., Pgm} (Exercise 15.11).
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Proof of Lemma 15.21

Since the upper bound (12) holds for any distribution Q, we are free to
choose it: in particular, we let {71, . ,WN} be an e-covering of Q in the
square-root KL pseudo-distance, and then set Q = % 221:1 P.x. By

construction, for each & with j € [M], we can find some v such that
D (Py|P,x) < €. Therefore, we have

lo —dpej
) N
% D=1 dP
dPy.
NdIP)’Yk
= D (Pyi[|Px) + log N
< € + log N.

D (Pyi||Q) = Eyp;

< Eyi

Since this bound holds for any choice of j € [M] and any choice of € > 0,
the claim (11) follows.
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Yang—Barron version of Fano's method

Lemma 15.21 allows us to prove a minimax lower bound of the order § as
long as the pair (d,€) € R2 are chosen such that

log M(8; p, ) > 2{€® + log N, (¢; P) + log 2} .

Finding such a pair can be accomplished via a two-step procedure:
(A) First, choose €, > 0 such that

€5 > log Nict, (eni P).- (13)
(B) Second, choose the largest 6, > 0 that satisfies the lower bound

log M (6,; p, Q) > 4€> + 2log 2. (14)
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Example 15.23: Minimax risks for generalized Sobolev

families

@ Recall that the standard regression model is based on i.i.d.
observations of the form

yi=f"(x;))+ow;, fori=12....n

where w; ~ N(0,1).
@ Assuming that the design points {x;}7_; are drawn in an i.i.d. fashion
from some distribution P, let us derive lower bounds in the

L2(PP)-norm:

17— |3 = / [F(x) — F*()PPP(d).

02/04/2022
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Example 15.23: Minimax risks for generalized Sobolev

families, cont.

o For a smoothness parameter o > 1/2, consider the ellipsoid /?(N)
given by &, = {(6))72, | Y207 <1}

e Given an orthonormal sequence (¢j)f.il in L2(P), we can then define
the function class 7, 1= {f = > 772, 0;¢; | (6));2; € €a}-

@ For any such function class, we claim that the minimax risk in
squared L2(P)-norm is lower bounded as

2a
. 2\ 2ar1
inf sup E {Hf - fH%] Zminq 1, (a) .
f fes, n
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Example 15.23: Minimax risks for generalized Sobolev

families, cont.

o Consider a function of the form f = Y72, 6;¢; for some 0 € (*(N),
and observe that by the orthonormality of (¢;):2,, Parseval's theorem

implies that [|f]|5 = Y272, 67. =

@ Consequently, the metric entropy of .%, scales as
log N (6; Za, || - ||l2) =< (1/6)/* (Example 5.12).

e Accordingly, we can find a §-packing {f1,...,fM} of .Z, in the
|| - [|2-norm with log M = (1/6)/* elements.
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Example 15.23: Step A

e For each j, let Pf; denote the distribution of y given {x;};_; when the
true regression function is f/, and let Q denote the n-fold product
distribution over the covariates {x;}7_;.

@ For any distinct pair of indices j # k, we have

D (P x Q|IPex x Q) = Ex [D (Pgi[|Pex)]
R
=Bl Y (7 (%) — ()
i=1
n .
= ool — I

o Consequently, we find that

IogNKL<e)=|ogN("fe Forll- 1) 3 (L

1
e Inequality (13) in step A can be satisfied by setting €2 < (%) 2041
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Example 15.23: Step B

@ It remains to choose & > 0 to satisfy the inequality (14) in step B.
Given our choice of €, and the scaling of the packing entropy, we

require
(1/6)Y* > ¢ { <12> = +2log 2}
o

o As Iong as n/o? is larger than some universal constant, the choice
2
82 = (= )2a+1 satisfies this condition.
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